Ingenieurgesellschaft mbH Leipzig

Institut Dr. Körner & Partner Ingenieurgesellschaft mbH Leipzig Graf-Platow-Straße 1. 04683 Naunhof

Mitglied im Bundesverband unabhängiger Institute für bautechnische Prüfungen e, V, bup Mitglied der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) Mitglied des Verbandes der Straßenbaulaboratorien e,V Mitglied des Deutschen Asphaltinstitutes (dai)

Anerkannt nach RAP Stra 15 sowie ergänzender Hinweis für:

	- 1	Fachgebiel											
		A	ВВ	BE	C	D	E	F	G	Н	1		
	Prüfungsart	Boden Boden verbes	Hynunen	Mannya- cumdatanch Fluxbytanch	Fingen	Georgen körnungen	Heton, Hetoniragi schuchten	Dünne Schichten Kallban weise	Aughalt	HGT Bodun senfest sgungen	Germische sibine Hiridemitte		
0	Baustoff- cing angle profungen				C 0 ¹³⁾	D 0144							
1	Fignungs- prüfungen	ΑI			C 1					H 1	11		
2	Fremdüber- wachungs- prübingen				C 2			F2			12		
3	Kontroll- prüfungen	A 3	BB 3	BE3	C 3	D 3	Е 3	F3	G 3	Н 3	13		
4	Schiedsunter- suchungen	A 4	BB 4	BE4	C 4	D 4	E 4	F4	G 4	H 4	I 4		

¹³ Nur bei Fugeneinlagen und Fugenmassen nach DIN EN 14188

Zusätzlich anerkannt im Freistaat Sachsen:

Gesteinskörnungen und Asphaltgemische Kenn-Nr.: 1570, VMPA - Betonprüfstelle (VMPA-B-2059)

Prüfzeugnis Nr.:

2024055_01EBV vom 25.07.2024

Gegenstand:

Eignungsnachweis (EgN) gemäß § 5 Ersatzbaustoffverordnung

Auftraggeber:

Rösl Entsorgung GmbH & Co. KG

Zschettgauer Str. 3

04838 Jesewitz OT Liemehna

Überwachungsstelle:

Institut Dr. Körner und Partner Ingenieurgesellschaft mbH Leipzig

Graf-Platow-Straße 1 04683 Naunhof

Untersuchungsstelle:

AWV Dr. Busse GmbH

Jössnitzer Straße 113

08525 Plauen

Lieferwerk:

Rösl Entsorgung GmbH & Co. KG

(Recyclingplatz Taucha, Pönitzer Weg)

Mineralischer

Ersatzbaustoff (MEB): Recycling-Baustoff 0/56 (Beton-Recycling)

Dieser Prüfbericht umfasst 7 Seiten, 3 Anlagen und ist nur in ungekürzter Fassung gültig. Angebot-Nr.: 20240269 vom 05.06.2024 / Auftrag vom 10.06.2024

¹⁴⁾ Nur bei Gesteinskörnungen für Baustoffgemische, die einer Güteüberwachung nach den TL G SoB unterliegen

⁻ Prüfungsarten 1, 2 und 3 für Kattrecycling in situ gemäß M KRC

Anerkannte Überwachungs- und Zerlifizierungstelle nach Bauproduktenverordnung für

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV Seite 2 von 7

Inhaltsangabe

		Seite
1	Zu Grunde liegende Vorschriften	2
2	Veranlassung und Gegenstand	3
3	Materialbeschreibung und Untersuchungsverfahren	3
4	Probenahme	3
5	Messwerte und Auswertung der chemischen Laboruntersuchungen	4
6	Betriebsbeurteilung	6
7	Bewertung der Ergebnisse gemäß § 10 Ersatzbaustoffverordnung	7
8	Abschließende Beurteilung	

Anlagen

Anlage 1 Probenentnahmeprotokoll nach LAGA PN 98 Anhang C
Anlage 2 Prüfberichte der chemischen Laboruntersuchungen
Anlage 3 Protokoll zur Betriebsbeurteilung / Betriebsbegehung

1 Zu Grunde liegende Vorschriften

|1| Ersatzbaustoffverordnung

Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung vom 09. Juni 2021 (Bundesgesetzblatt Jahrgang 2021 Teil I Nr. 43, ausgegeben zu Bonn am 16. Juli 2021)

|2| LAGA PN 98

Mitteilung der Länderarbeitsgemeinschaft Abfall (LAGA) 32: Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung/Beseitigung von Abfällen (Stand Mai 2019)

|3| DIN 19528:2023-07

Elution von Feststoffen - Perkolationsverfahren zur gemeinsamen Untersuchung des Elutionsverhaltens von anorganischen und organischen Stoffen

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV Seite 3 von 7

2 Veranlassung und Gegenstand

Mit Einführung der Ersatzbaustoffverordnung (EBV) zum 01. August 2023 sind Betreiber von Aufbereitungsanlagen, welche mineralische Ersatzbaustoffe (MEB) herstellen gemäß § 5 EBV verpflichtet eine Güteüberwachung durchzuführen. Bestandteil dieser Güteüberwachung ist die Erstellung eines Eignungsnachweises durch eine Überwachungsstelle.

Auf Grundlage des Angebots 20240269 vom 05.06.2024 erhielt die Institut Dr. Körner & Partner Ingenieurgesellschaft mbH Leipzig (ikp) von der Rösl Entsorgung GmbH & Co. KG den Auftrag zur Erstellung eines Eignungsnachweises gemäß § 5 EBV für einen Recycling-Baustoff.

Betreiber von Aufbereitungsanlagen dürfen erst nach dem erbrachten Eignungsnachweis durch die Überwachungsstelle den geprüften mineralischen Ersatzbaustoff in den Verkehr bringen. Der Eignungsnachweis besteht aus der Erstprüfung und der Betriebsbeurteilung. Der Eignungsnachweis beinhaltet ausschließlich eine chemische Bewertung.

Die Erstellung des Eignungsnachweises erfolgt durch eine Überwachungsstelle (RAP-Stra-Prüfstelle, Fachgebiet D oder I bzw. Konformitätsstelle nach ISO/IEC 17020 oder ISO/IEC 17065). Die ikp erfüllt als RAP-Stra-Prüfstelle mit Zulassung in Fachgebiet D und I die Bedingung als Überwachungsstelle.

3 Materialbeschreibung und Untersuchungsverfahren

Das geprüfte Material (Beton-Recycling) wurde mittels einer mobilen Brecheranlage auf dem Recyclingplatz der Rösl Entsorgung GmbH & Co. KG (Standort Taucha, Pönitzer Weg) zu einem Recycling-Baustoff mit einer Körnung zwischen O und 56 mm aufbereitet. Die Aufhaldung des Recycling-Baustoffes nach dem Brechvorgang erfolgte über Radlader. Der zu prüfende Recycling-Baustoff wies keine organoleptischen Auffälligkeiten auf.

Verfahren und Umfang der chemischen Analytik des zu prüfenden Recycling-Baustoffes werden durch die Parameter der Anlage 4, Tab 2.1 (Eluatwerte im ausführlichen Säulenversuch nach DIN 19528) und der Tab. 2.2 (Überwachungswerte - Feststoffwerte) der Ersatzbaustoffverordnung charakterisiert.

4 Probenahme

Die Probenahme des aufbereiteten RC-Baustoffes erfolgte am 19.06.2024 durch Herrn Graupner (ikp) in Anwesenheit von Frau Eckert (Rösl GmbH).

Gemäß der Richtlinie LAGA PN 98 wurde der Recycling-Baustoff beprobt. Dir Beprobung wurde an einem ca. 180 m³ großen Haufwerk durchgeführt. Die Entnahme der Proben erfolgte gemäß den Vorgaben der LAGA PN 98 in die dem Volumen des Haufwerkes entsprechenden erforderlichen Einzel- und Mischproben. Das Protokoll zur Probenentnahme kann der Anlage 1 entnommen werden.

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV Seite 4 von 7

Die Probenteilung erfolgt nach vorheriger Homogenisierung der Gesamtheit der Probe mittels Riffelteiler im Labor. Aus den erhaltenen Laborproben wurde nach vorheriger Aliquotierung und Abtrennung entsprechender Rückstellproben eine Prüfprobe erstellt.

5 Messwerte und Auswertung der chemischen Laboruntersuchungen

Gemäß EBV wird im Rahmen der Erstprüfung festgestellt, ob der hergestellte MEB die geltenden Materialwerte der Anlage 1 nach Maßgabe des § 10 Absatz 1 und 2 sowie die Parameter nach Anlage 4 Tabelle 2.1 einhält. Weiterhin umfasst die Erstprüfung die Ermittlung der Materialwerte nach § 10 Absatz 5 und die Überprüfung auf Einhaltung der Überwachungswerte nach Anlage 4 Tabelle 2.2. Die analytische Untersuchung des Recycling-Baustoffes bezieht sich auf § 9 EBV. Die Bestimmung der Messwerte aus dem Eluat erfolgt im Rahmen der Erstprüfung durch den ausführlichen Säulenversuch nach DIN 19528 mit einem Wasser-zu-Feststoffverhältnis von 2:1. Die ermittelten Messwerte des ausführlichen Säulenversuches an dem geprüften Recycling-Baustoff sowie die Feststellung der Materialwerte und die Überwachungswerte im Feststoff, werden in den folgenden Tabellen 1 - 3 dargestellt. Die Prüfung erfolgte gemäß des in der Tabelle 1 angegebenen Untersuchungsverfahrens im akkreditierten Prüflabor Nr. D-PL-14087-01-00 der AWV-Dr. Busse GmbH (AGROLAB Group). Die detaillierten Analyseergebnisse (Prüfbericht des Umweltlabors) sind der Anlage 2 des Prüfzeugnisses zu entnehmen.

Tab. 1: Messwerte des ausführlichen Säulenversuches nach DIN 19528 am Recycling-Baustoff 0/56 nach EBV, Anlage 4, Tab. 2.1

		Messwerte								
Parameter	Einheit	W/F = 0,3	W/F = 1,0	W/F = 2,0	W/F = 4,0					
pH-Wert	27	12	12	12	12					
Elektrische Leitfähigkeit	[µS/cm]	2.510	2.260	1.760	1.470					
Chlorid	[mg/l]	29	19	8,4	3,2					
Sulfat	[mg/l]	34	29	22	19					
DOC	[mg/1]	9,4	3,8	2,2	1,1					
PAK ₁₅	[µg/]	4,8	3,8	2,5	3,0					
MKW	[µg/l]	< 50 (65)	< 50	< 50	< 50					
Phenole	[µg/l]	1,4	1,1	n.b.	n.b.					
Antimon	[µg/l]	< 2,5	< 2,5	< 2,5	< 2,5					
Arsen	[µg/l]	< 2,5	< 2,5	< 2,5	< 2,5					
Blei	[µg/]	< 1,0	1,2	< 1,0	< 1,0					

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV Seite 5 von 7

Forts. Tab. 1: Messwerte des ausführlichen Säulenversuches nach DIN 19528 am Recycling-Baustoff 0/56 nach EBV, Anlage 4, Tab. 2.1

		Messwerte					
Parameter	Einheit	W/F = 0,3	W/F = 1,0	W/F = 2,0	W/F = 4,0		
Cadmium	[µg/l]	< 0,25	< 0,25	< 0,25	< 0,25		
Chrom ges.	[µg/l]	26	22	12	7,8		
Kupfer	[µg/l]	30	19	8,9	< 5,0		
Molybdän	[µg/l]	7,3	5,7	< 5,0	< 5,0		
Nickel	[µg/l]	< 5,0	< 5,0	< 5,0	< 5,0		
Vanadium	[µg/1]	8,3	4,7	2,9	2,4		
Zink	[µg/l]	< 30	< 30	< 30	< 30		

n.b. ≙ Parameter ist hinsichtlich seiner Bestimmungsgrenze nicht quantifizierbar

Tab. 2: Feststellung der Materialwerte des Recycling-Baustoffes 0/56 nach EBV, Anlage 1, Tab. 1 aus den berechneten Messwerten der Ergebnisse des ausführlichen Säulenversuches nach DIN 19528

Parameter	Berechnete Messwerte aus		Grenzwerte für geregelte Ersatzbaustoffe nach EBV, Anlage 1 Tabelle 1					
		dem Eluat W/F = 2:1	RC-1	RC-2	RC-3			
pH-Wert ¹⁾	*	12	6 - 13	6 - 13	6-13			
Elektrische Leitfähigkeit ²⁾	[µS/cm]	2.000	2.500	3.200	10.000			
Sulfat	[mg/l]	26	600	1.000	3.500			
PAK ₁₅ 3)	[µg/l]	3,3	4,0	8,0	25			
PAK ₁₆ ⁴⁾	[mg/kg]	2,7	10	15	20			
Chrom ges.	[µg/l]	17	150	440	900			
Kupfer	[µg/l]	15	110	250	500			
Vanadium	[µg/l]	4,3	120	700	1.350			

 $^{^{1)}}$ stoffspezifischer Orientierungswert, bei Abweichungen ist Ursache zu prüfen

²⁾ Stoffspezifischer Orientierungswert, bei Abweichungen ist Ursache zu prüfen

³⁾ PAK₁₅; PAK₁₆ ohne Naphthalin und Methylnaphthaline

⁴⁾ PAK₁₈: stellvertretend für die Gruppe der polyzyklischen aromatischen Kohlenwasserstoffe (PAK) werden nach der Liste der Environmenal Protection Agency (EPA) 16 ausgewählte PAK untersucht: Acenaphthen, Acenaphthylen, Anthracen, Benzo(a)anthracen,Benzo(a)pyren, Benzo(b)fluoranthen, Benzo(g,h,i)-perylen, Benzo(k)fluoranthen, Chrysen, Dibenzo(a,h)anthracen, Fluoranthen, Fluoren, Indeno(1,2,3-cd)pyren, Naphthalin, Phenanthren und Pyren.

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV Seite 6 von 7

Tab. 3: Darstellung der Messwerte im Feststoff des Recycling-Baustoffes 0/56 sowie der angegebenen Überwachungswerte nach EBV, Anlage 4, Tab. 2.2

Parameter	Einheit	Messwerte aus dem Feststoff	Überwachungswerte nach EBV, Anlage 4 Tabelle 2.2
Arsen	[mg/kg]	3,2	40
Blei	[mg/kg]	6,5	140
Chrom	[mg/kg]	21	120
Cadmium	[mg/kg]	< 0,13	2
Kupfer	[mg/kg]	8,1	80
Quecksilber	[mg/kg]	< 0,050	0,6
Nickel	[mg/kg]	10	100
Thallium	[mg/kg]	0,11	2
Zink	[mg/kg]	32	300
Kohlenwasserstoffe ¹⁾	[mg/kg]	< 50 (120)	300 (600)
PCB-118 + PCB ₆	[mg/kg]	< 0,010	0,15

n.b. ≙ Parameter ist hinsichtlich seiner Bestimmungsgrenze nicht quantifizierbar

6 Betriebsbeurteilung

Gemäß Ersatzbaustoffverordnung § 5 Absatz 3 gilt die Betriebsbeurteilung als bestanden, wenn die technischen Anlagenkomponenten, die Betriebsorganisation sowie die personelle Ausstattung des Betreibers der Aufbereitungsanlage deren Eignung entsprechen und der Betreiber die Gewähr bietet, dass die Anforderung nach Ersatzbaustoffverordnung § 5 Absatz 2 und 3 erfüllt werden.

Bei der Betriebsbegehung der Firma Rösl Entsorgung GmbH & Co. KG (Standort Taucha, Pönitzer Weg) am 19.06.2024 konnten durch die Überwachungsstelle die folgenden Nachweiskriterien bestätig werden:

- qualifizierte personelle Aufstellung
- Annahmekontrollen
- innerbetriebliche organisatorische Regelungen
- geeignete technische Anlagenkomponenten
- WPK-System (WPK-Beauftragter: Herr Rösl)

Somit gilt die Betriebsbeurteilung als bestanden.

Das Protokoll zur Betriebsbegehung kann der Anlage 3 entnommen werden.

¹⁾ Der angegebene Wert gilt für Kohlenwasserstoffverbindung mit einer Kettenlänge von C₁₀ bis C₂₂. Der Gesamtgehalt (C₁₀ – C₄₀) bestimmt nach der DIN EN 14039, Ausgabe Januar 2005, darf insgesamt den in Klammern genannten Wert nicht überschreiten. Überschreitungen, die auf Asphaltanteile zurückzuführen sind, stellen kein Ausschlusskriterium dar.

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV Seite 7 von 7

7 Bewertung der Ergebnisse gemäß § 10 Ersatzbaustoffverordnung

Gemäß den analytischen Untersuchungen an dem aufbereiteten Recycling-Baustoff 0/56 ist der mineralische Ersatzbaustoff (MEB) nach EBV, Anlage 1 Tabelle 1 in die Materialklasse RC-1 einzustufen.

8 Abschließende Beurteilung

Bezüglich der betrieblichen, personellen und gerätetechnischen Ausstattung der Firma Rösl Entsorgung GmbH & Co. KG (Standort Taucha, Pönitzer Weg) wird die Eignung zur Aufbereitung von mineralischen Ersatzbaustoffen bestätigt.

Der geprüfte Recycling-Baustoff erfüllt die Anforderungen der Ersatzbaustoffverordnung (EBV) für die **Materialklasse RC-1** und kann entsprechend den Vorgaben der Anlage 2, Tabelle 1 verwendet werden.

Dipl.-Ing. (FH) George Prüfstellenleiter

eorge anerkani Profstell Profstell RAP S

M.Sc. Graupner Projektingenieur

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV

Anlage 1

Probenentnahmeprotokoll nach LAGA PN 98 Anhang C

INSTITUT DR. KORNER UND PARTNER

Ingenieurgesellschaft mbH Lelpzig

Institut Dr Körner & Parinet, Graf-Platow-Straße 1, 04583 Albrechlaham (Stadt Naumhof) NACH RAP Stra anomarine Phylosele

Tel (034293) 5270 Fax. (034293) 52730

Probenahmeprotokoli nach LAGA PN 98

Prüf-Nr.: 2024055_01E8V

Laborprobe: 2024055_01EBV

A Allgemeine Angaben

Veranlasser/Auftraggeber: Rösl Entsorgung GmbH & Co. KG (Recyclingplatz Taucha, Pönitzer Weg)

2 Bauvorhaben:

Grund der Probenahme:

anwesende Personen:

Eignungsnachweis nach § 5 Ersatzbaustoffverordnung

Probenahmelag:

19.06.2024

Uhrzeit:

09:30 Uhr Witterung: bewölt, trocken, 15 °C

Probenehmer (Firma):

Institut Dr. Körner und Partner Ingenleurgesellschaft mbH Leipzig (ikp Leipzig)

Frau Eckert (Rösl GmbH) Herr Graupner (ikp Leipzig)

7 Herkunft des Gesteins/Erzeugnisses/Abfalis:

div. BV Leipzig (z. B. Jahnalle, Geithalner Str., Druckereist.)

8 vermutete Schadstoffe/Gefährdungen:

unspezifischer Verdacht

9 Untersuchungstelle:

AWV-Dr. Busse GmbH (Agrolab Group)

B Vor-Ort-Begebenheiten

10 Abfallart/allgemeine Beschreibung:

Recycling-Baustoff / Beton-Recycling

Farba:

grau

Geruch:

unauffällig, erdig

Konsistenz:

fest / rollig

Körnung/Größlkorn:

0/45 mm / < 50 mm

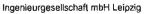
11 Gesamtvolumen/Form der Lagerung:

ca. 180 m³

12 Lagerungsdauer:

seit Juni 2023

13 Einflüsse auf das Abfallmaterial:


Witterung

14 Probenahmegerät und -material:

Edelstahlschaufel

saubere PN-Eimer

INSTITUT DR. KÖRNER UND PARTNER

Institut Dr. Korner & Partner, Graf-Platow-Straße 1, 04683 Albrechtshain (Stadt Naumhof)

room RAP Stra anemantes Professie

Tel : (034293) 5270 Fax: (034293) 52730

Probenahmeprotokoll nach LAGA PN 98

15 Probenahmeverfahren:

PN 98

'Anzahl und Volumen der Probe(n)

Einzelprobe: Liter Mischprobe: Liter Sammelprobe: zu je Liler 2 Liter Laborprobe:

16 Entnahmetlefe (Schicht):

bis ca. 1 m

17 Kennzeichung der Probe:

2024055 01EBV

18 Probenvorbereitung:

keine

19 Probentransport und -lagerung:

durch Prüfstellenfahrzeug in geschlossenen Plastikeimern

Kühlung:

20 Vor-Ort-Untersuchung:

visuelle Kontrolle / Sichtprüfung

21 Beobachtung bei der Probenahme/Bemerkungen:

22 Topographische Karte als Anhang?

O ja

nein

Hochwert:

Rechtswert:

23 Kennzeichnung der Probenstelle:

Recyclingplatzi - Standort Taucha (Pönitzer Weg)

keine Auffälligkeiten

24 Ort:

Datum:

Taucha 19.06.2024 Unterschrift Probenehmer:

Anwesende/Zeugen:

Herr Graupner

Frau Eckert

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV

Anlage 2

Prüfberichte der chemischen Laboruntersuchungen

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

AWV JössnitzerStr.113 08525 Plauen

Institut Dr. Körner & Partner Ingenieurgesellschaft mbh Leipzig Graf-Platow-Straße 1 04683 Naunhof

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

Analysennr.

778851

Probeneingang

26.06.2024

Probenahme

26.06.2024

Probenehmer

Auftraggeber

Kunden-Probenbezeichnung

2024055_01EBV (Beton-RC 0/56)

Säulentestnr.

778851 Einheit

Ergebnis

Best.-Gr. Parameter Methode

Trockensubstanz	u)	%	89,9	0,1	1580	DIN EN 14346 : 2007-03, Verfahrer
TIOCRETISUDStatiz		/0	00,0	0,1	1000	A(OB)
Feststoff						
Kohlenwasserstoffe C10-C22 (GC)	u)	mg/kg	<50	50	266	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09(OB)
Kohlenwasserstoffe C10-C40	u)	mg/kg	120	50	66829	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09(OB)
Arsen (As)	u)	mg/kg	3,2	8,0	100211	DIN EN 16171 : 2017-01(OB)
Blei (Pb)	u)	mg/kg	6,5	2	100190	DIN EN 16171 : 2017-01(OB)
Cadmium (Cd)	u)	mg/kg	<0,13	0,13	100192	DIN EN 16171 : 2017-01(OB)
Chrom (Cr)		mg/kg	21	1	100194	DIN EN 16171 : 2017-01(OB)
Kupfer (Cu)	u)	mg/kg	8,1	1	100199	DIN EN 16171 : 2017-01(OB)
Nickel (Ni)	u)	mg/kg	10	1	100200	DIN EN 16171 : 2017-01(OB)
Quecksilber (Hg)	u)	mg/kg	<0,050	0,05	1555	DIN EN ISO 12846 : 2012-08(OB)
Thallium (TI)		mg/kg	0,11	0,1	100206	DIN EN 16171 : 2017-01(OB)
Zink (Zn)		mg/kg	32	6	100209	DIN EN 16171 : 2017-01(OB)
Feststoff (PAK)						
Naphthalin	u)	mg/kg	<0,010 (NWG)	0,05	104182	DIN ISO 18287 : 2006-05(OB)
Acenaphthen	u)	mg/kg	<0,050 m)	0,05	104180	DIN ISO 18287 : 2006-05(OB)
Acenaphthylen	u)	mg/kg	<0,050 m)	0,05	104181	DIN ISO 18287 : 2006-05(OB)
Fluoren	u)	mg/kg	<0,050 m)	0,05	104179	DIN ISO 18287 : 2006-05(OB)
Phenanthren	u)	mg/kg	0,12	0,05	104178	DIN ISO 18287 : 2006-05(OB)
Anthracen	u)	mg/kg	0,14	0,05	104177	DIN ISO 18287 : 2006-05(OB)
Fluoranthen	u)	mg/kg	0,57	0,05	104176	DIN ISO 18287 : 2006-05(OB)
Pyren	u)	mg/kg	0,50	0,05	104175	DIN ISO 18287 : 2006-05(OB)
Benzo(a)anthracen	u)	mg/kg	<0,050 m)	0,05	104174	DIN ISO 18287 : 2006-05(OB)
Chrysen	u)	mg/kg	0,27	0,05	104173	DIN ISO 18287 : 2006-05(OB)
Benzo(b)fluoranthen	u)	mg/kg	0,30	0,05	104172	DIN ISO 18287 : 2006-05(OB)
Benzo(k)fluoranthen	u)	mg/kg	0,13 "	0,1	104171	DIN ISO 18287 : 2006-05(OB)
Benzo(a)pyren	u)	mg/kg	0,22	0,05	104170	DIN ISO 18287 : 2006-05(OB)
Dibenzo(ah)anthracen	u)	mg/kg	<0,050 m)	0,05	104168	DIN ISO 18287 : 2006-05(OB)
Benzo(ghi)perylen	u)	mg/kg	0,17	0,05	104167	DIN ISO 18287 : 2006-05(OB)
Indeno(1,2,3-cd)pyren	u)	mg/kg	0,13	0,05	104169	DIN ISO 18287 : 2006-05(OB)

Seite 1 von 5

Deutsche Akkreditierungsstelle D-PL-14087-01-00

((DAkkS

Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025,2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778851

Analysennr.

2024055_01EBV (Beton-RC 0/56)

Kunden-Probenbezeichnung	20240	55_01EBV (Beton-R	C 0/56)		
_	Einheit	Ergebnis	BestGr.	Parameter	Methode
PAK EPA Summe gem.	mg/kg	2,55 ×)	1	117384	Berechnung aus Messwe

- 180 1 140040 Downtown 110 M	Berechnung aus Messwerte Einzelparameter	117384	1	2,55 ×)	mg/kg	PAK EPA Summe gem. BBodSchV 2021
	Berechnung aus Messwerte Einzelparameter	112213	1	2,7 #5)	mg/kg	PAK EPA Summe gem.

Feststoff	(PCB)
-----------	-------

I catatan (i db)						
PCB (28)	u)	mg/kg	<0,0010 (NWG)	0,005	100213	DIN EN 17322 : 2021-03(OB)
PCB (52)	u)	mg/kg	<0,0010 (NWG)	0,005	100215	DIN EN 17322 : 2021-03(OB)
PCB (101)	u)	mg/kg	<0,0010 (NWG)	0,005	100216	DIN EN 17322 : 2021-03(OB)
PCB (118)			<0,0010 (NWG)	0,005	100214	DIN EN 17322 : 2021-03(OB)
PCB (138)		mg/kg	<0,0010 (NWG)	0,005	100217	DIN EN 17322 : 2021-03(OB)
PCB (153)	u)	mg/kg	<0,0010 (NWG)	0,005	100218	DIN EN 17322 : 2021-03(OB)
PCB (180)	u)	mg/kg	<0,0010 (NWG)	0,005	100219	DIN EN 17322 : 2021-03(OB)
PCB 7 Summe gem. BBodSchV 2021		mg/kg	<0,010 ×)	0,01	117381	Berechnung aus Messwerten der Einzelparameter
PCB 7 Summe gem.		mg/kg	<0,010 #5)	0,01	112216	Berechnung aus Messwerten der Einzelparameter

Fraktionen

Analyse in der Gesamtfraktion	u)				8934	DIN 19747 : 2009-07(OB)
Anteil Fraktion < 32 mm - FS	u) %	6	73.9	0,1	135392	DIN 19747 : 2009-07(OB)
Fraktion > 32 mm	%		26,1	0,1	20113	Berechnung aus dem Messwert

Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert, Ausschließlich nicht akkreditierte

Verfahren sind mit dem Symbol " *) " gekennzeichnet.

Eluat				
pH-Wert berechnet		12	118379	Berechnung aus den Einzelmesswerten
elektrische Leitfähigkeit berechnet	µS/cm	2000	118380	Berechnung aus den Einzelmesswerten
Kohlenwasserstoffe C10-C22 berechnet	µg/l	0,0 - 50	118356	Berechnung aus den Einzelmesswerten
Kohlenwasserstoffe C10-C40 berechnet	μg/l	8,5 - 52	118394	Berechnung aus den Einzelmesswerten
Chlorid berechnet	mg/l	15	118382	Berechnung aus den Einzelmesswerten
Sulfat berechnet	mg/l	26	118381	Berechnung aus den Einzelmesswerten
Antimon berechnet	µg/l	0,0 - 2,5	118383	Berechnung aus den Einzelmesswerten
Arsen berechnet	µg/l	0,0 - 2,5	111918	Berechnung aus den Einzelmesswerten
Blei berechnet	µg/l	0,43 - 1,1	111920	Berechnung aus den Einzelmesswerten
Cadmium berechnet	µg/l	0,0 - 0,25	111919	Berechnung aus den Einzelmesswerten
Chrom berechnet	μg/l	17	111921	Berechnung aus den Einzelmesswerten
Kupfer berechnet	µg/l	15	111922	Berechnung aus den Einzelmesswerten
Molybdän berechnet	μg/l	3,0 - 5,6	118389	Berechnung aus den Einzelmesswerten
Nickel berechnet	μg/l	0,0 - 5,0	111923	Berechnung aus den Einzelmesswerten
Vanadium berechnet	μg/l	4,3	118392	Berechnung aus den Einzelmesswerten
Zink berechnet	µg/l	0,0 - 30	111925	Berechnung aus den Einzelmesswerten
DOC berechnet	mg/l	3,7	118393	Berechnung aus den Einzelmesswerten

Eluat (PAK)

AG Chemnitz HRB 11049 Ust/VAT-ID-Nr.: DE 170686 363

Geschäftsführer Dr. Paul Wimmer Dr. Carlo C. Peich Dr. Torsten Zurmühl

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

Datum

Best.-Gr. Parameter Methode

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Analysennr.

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778851

Einheit

Kunden-Probenbezeichnung

2024055_01EBV (Beton-RC 0/56) Ergebnis

Acenaphthen berechnet	μg/l	0,29	118347	Berechnung aus den Einzelmesswerten
Acenaphthylen berechnet	μg/l	0,027	118367	Berechnung aus den Einzelmesswerten
Fluoren berechnet	µg/l	0,090	118366	Berechnung aus den Einzelmesswerten
Phenanthren berechnet	μg/l	0,30	118360	Berechnung aus den Einzelmesswerten
Anthracen berechnet	μg/l	0,12	118349	Berechnung aus den Einzelmesswerten
Fluoranthen berechnet	μg/l	0,47	118357	Berechnung aus den Einzelmesswerten
Pyren berechnet	μg/l	1,7	118365	Berechnung aus den Einzelmesswerten
Benzo(a)anthracen berechnet	μg/l	0,12	118350	Berechnung aus den Einzelmesswerten
Chrysen berechnet	μg/l	0,12	118354	Berechnung aus den Einzelmesswerten
Benzo(b)fluoranthen berechnet	μg/l	0,0061 - 0,011	118351	Berechnung aus den Einzelmesswerten
Benzo(k)fluoranthen berechnet	μg/l	0,0 - 0,0095	118353	Berechnung aus den Einzelmesswerten
Benzo(a)pyren berechnet	µg/l	0,0 - 0,0095	118368	Berechnung aus den Einzelmesswerten
Dibenzo(a,h)anthracen berechnet	µg/l	0,0 - 0,0070	118355	Berechnung aus den Einzelmesswerten
Benzo(ghi)perylen berechnet	μg/l	0,0 - 0,0070	118352	Berechnung aus den Einzelmesswerten
Indeno(123-cd)pyren berechnet	µg/l	0,0 - 0,0070	118358	Berechnung aus den Einzelmesswerten
PAK 15 Summe berechnet	µg/l	3,3	118396	Berechnung aus Messwerten de Einzelparameter

	Eluat ((Phenol/	Alkyl	phenole)
--	---------	----------	-------	----------

Eluat (Phenoi/ Alkylphenole)				
Phenol berechnet	µg/l	0,44 - 0,70	118361	Berechnung aus den Einzelmesswerten
2-Ethylphenol berechnet	μg/l	0,0 - 0,039	119876	Berechnung aus den Einzelmesswerten
2-Methylphenol berechnet	µg/l	0,0 - 0,088	118362	Berechnung aus den Einzelmesswerten
3-Ethylphenol berechnet	μg/l	0,0 - 0,16	118375	Berechnung aus den Einzelmesswerten
3-Methylphenol berechnet	μg/l	0,15 - 0,38	118363	Berechnung aus den Einzelmesswerten
4-Methylphenol berechnet	μg/l	0,0 - 0,050	118364	Berechnung aus den Einzelmesswerten
2,3-Dimethylphenol berechnet	μg/l	0,0 - 0,024	118369	Berechnung aus den Einzelmesswerten
2,4-Dimethylphenol berechnet	μg/l	0,0 - 0,030	118370	Berechnung aus den Einzelmesswerten
2,5-Dimethylphenol berechnet	μg/l	0,0 - 0,030	118371	Berechnung aus den Einzelmesswerten
2,6-Dimethylphenol berechnet	μg/l	0,0 - 0,030	118372	Berechnung aus den Einzelmesswerten
3,4-Dimethylphenol berechnet	μg/l	0,0 - 0,015	118373	Berechnung aus den Einzelmesswerten
3,5-Dimethylphenol/ 4-Ethylphenol berechnet	μg/l	0,0 - 0,21	118374	Berechnung aus den Einzelmesswerten
2,3,5-/2,4,5-Trimethylphenol berechnet	μg/l	0,0 - 0,010	118376	Berechnung aus den Einzelmesswerten
2,4,6-Trimethylphenol berechnet	μg/l	0,0 - 0,015	118378	Berechnung aus den Einzelmesswerten
3,4,5-Trimethylphenol berechnet	µg/l	0,0 - 0,015	118348	Berechnung aus den Einzelmesswerten

Seite 3 von 5

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

qeken

akkreditierte

7025:2018 akkreditiert

Ш

Die in diesem Dokument berichteten Verfahren sind gemäß

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778851

Analysennr.

2024055_01EBV (Beton-RC 0/56)

Kunden-Probenbezeichnung

	Einneit	Ergeonis	DestGr.	raiametei	Methode
Phenole Summe berechnet	μg/l	0,58		118395	Berechnung aus Messwerten der Einzelparameter

Aufbereitung

Königswasseraufschluß	u)	1681	DIN EN 13657 : 2003-01(OB)
Ausführlicher Säulenversuch DIN 19528	u)	 111912	DIN 19528 : 2009-01(OB)

Sonstige Parameter

Masse Laborprobe	u) ka	•	24,7	0,001	14877	DIN 19747 : 2009-07(OB)
11.0000 Edit 0. p. 000						

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.
#5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze zur Berechnung zugnunde gelegt.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, de Maltixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender

Bestimmungsgrenze nicht quantifizierbar. Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze

nicht nachzuweisen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

u) externe Dienstleistung eines AGROLAB GROUP Labors

Untersuchung durch

(OB) AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg, für die zitierte Methode akkreditiert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14289-01-00 DAkkS

Methoden

DIN EN ISO 12846 : 2012-08; DIN EN 13657 : 2003-01; DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09; DIN EN 14346 : 2007-03, Verfahren A; DIN EN 16171 : 2017-01; DIN EN 17322 : 2021-03; DIN ISO 18287 : 2006-05; DIN 19528 : 2009-01; DIN 19747 : 2009-07

Beginn der Prüfungen: 26.06.2024 Ende der Prüfungen: 03.07.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

Analysennr.

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778851

Kunden-Probenbezeichnung

2024055_01EBV (Beton-RC 0/56)

Shill

AWV Sebastian Thiele, Tel. 03741/55076-8 Sebastian.Thiele@agrolab.de Kundenbetreuung

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025;2018 akkreditiert, Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol " 1," gekennzeichnet.

Your labs. Your service.

AWV JössnitzerStr.113 08525 Plauen

Institut Dr. Körner & Partner Ingenieurgesellschaft mbh Leipzig Graf-Platow-Straße 1 04683 Naunhof

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr ; Prüf-Nr.: 2024055_01EBV

Analysennr.

778852

Probeneingang

26.06.2024

Probenahme

26.06.2024

Probenehmer

Auftraggeber

Kunden-Probenbezeichnung

L/S=0.3 2024055_01EBV (Beton-RC 0/56)

Ergebnis

Säulentestnr.

778851

Einheit

Best.-Gr. Parameter Methode

		FILLIGIT	Ligebilis	Door. Or.	i didiliotoi	
Eluat						
pH-Wert	u)		12	0	76801	DIN EN ISO 10523 : 2012-04(OB)
elektrische Leitfähigkeit	u)	μS/cm	2510	10	2828	DIN EN 27888 : 1993-11(OB)
Kohlenwasserstoffe C10-C22	u)	µg/l	<50	50	117972	DIN EN ISO 9377-2 : 2001-07(OB)
Kohlenwasserstoffe C10-C40		µg/l	65	50	100286	DIN EN ISO 9377-2 : 2001-07(OB)
Chlorid (CI)		mg/l	29	2	4900	DIN EN ISO 10304-1 : 2009- 07(OB)
Sulfat (SO4)	u)	mg/l	34	2	4916	DIN EN ISO 10304-1 : 2009- 07(OB)
Antimon (Sb)	u)	μg/l	<2,5	2,5	106362	DIN EN ISO 17294-2 : 2017- 01(OB)
Arsen (As)	u)	µg/l	<2,5	2,5	100222	DIN EN ISO 17294-2 : 2017- 01(OB)
Blei (Pb)	u)	µg/l	<1,0	1	14075	DIN EN ISO 17294-2 : 2017- 01(OB)
Cadmium (Cd)	u)	µg/l	<0,25	0,25	14074	DIN EN ISO 17294-2 : 2017- 01(OB)
Chrom (Cr)	u)	μg/l	26	1	100223	DIN EN ISO 17294-2 : 2017- 01(OB)
Kupfer (Cu)	u)	µg/l	30	5	14077	DIN EN ISO 17294-2 : 2017- 01(OB)
Molybdän (Mo)	u)	μg/l	7,3	5	13055	DIN EN ISO 17294-2 : 2017- 01(OB)
Nickel (Ni)	u)	μg/l	<5,0	5	14078	DIN EN ISO 17294-2 : 2017- 01(OB)
Vanadium (V)	u)	μg/l	8,3	2	100281	DIN EN ISO 17294-2 : 2017- 01(OB)
Zink (Zn)	u)	µg/l	<30	30	100302	DIN EN ISO 17294-2 : 2017- 01(OB)
DOC	u)	mg/l	9,4	1	2382	DIN EN 1484 : 2019-04(OB)

Eluat (F	PAK)
----------	------

diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit

Liuat (i Ait)					
Acenaphthen	u) µg/l	0,28	0,01	104200	DIN 38407-39 : 2011-09(OB)
Acenaphthylen	u) µg/l	0,023	0,01	104186	DIN 38407-39 : 2011-09(OB)
Fluoren	u) µg/l	0,20	0,01	104187	DIN 38407-39 : 2011-09(OB)
Phenanthren	u) µg/l	1,6	0,01	104189	DIN 38407-39 : 2011-09(OB)
Anthracen	u) µg/l	0,27	0,01	104199	DIN 38407-39 : 2011-09(OB)
Fluoranthen	u) µg/l	1,2	0,01	104192	DIN 38407-39 : 2011-09(OB)
Pyren	u) µg/l	1,0	0,01	104188	DIN 38407-39 : 2011-09(OB)
Benzo(a)anthracen	u) µg/l	0,074	0,01	104198	DIN 38407-39 : 2011-09(OB)
Chrysen	u) µg/l	0,11	0,01	104194	DIN 38407-39 : 2011-09(OB)

Seite 1 von 3

Geschäftsführer Dr. Paul Wimmer Dr. Carlo C. Peich Dr. Torsten Zurmühl

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

AGROLAB

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778852

Analysennr.

L/S=0.3 2024055_01EBV (Beton-RC 0/56)

Kunden-Probenbezeichnung Best,-Gr. Parameter Methode Einheit Ergebnis

		•			
Benzo(b)fluoranthen	u) µg/l	(1 <0,0060 (NWG) pm)	0,02	104197	DIN 38407-39 : 2011-09(OB)
Benzo(k)fluoranthen	u) µg/l		0,02	104195	DIN 38407-39 : 2011-09(OB)
Benzo(a)pyren	u) µg/l		0,02	104185	DIN 38407-39 : 2011-09(OB)
Dibenzo(ah)anthracen	u) µg/l		0,02	104193	DIN 38407-39 : 2011-09(OB)
Benzo(ghi)perylen	u) µg/l	<0,0060 (NWG) pm)	0,02	104196	DIN 38407-39 : 2011-09(OB)
Indeno(1,2,3-cd)pyren	u) µg/l		0,02	104191	DIN 38407-39 : 2011-09(OB)
PAK 15 Summe gem. ErsatzbaustoffV	µg/l		0,05	112214	Berechnung aus Messwerten der Einzelparameter

Fluat (Phenol/ Alkylphenole)

Phenol	u)	µg/l	1,4 hb)	0,25	100253	DIN 38407-27 : 2012-10(OB)
2-Methylphenol	u)	μg/l	<0,20 m)	0,2	100257	DIN 38407-27 : 2012-10(OB)
3-Methylphenol	u)	μg/l	<0,80 m)	0,8	100258	DIN 38407-27 : 2012-10(OB)
4-Methylphenol	u)	μg/l	<0,050 m)	0,05	100259	DIN 38407-27 : 2012-10(OB)
2,3-Dimethylphenol	u)	μg/l	<0,010 (NWG)	0,05	104149	DIN 38407-27 : 2012-10(OB)
2.4-Dimethylphenol	u)	μg/l	<0,050 m)	0,05	104150	DIN 38407-27 : 2012-10(OB)
2,5-Dimethylphenol		µg/l	<0,050 m)	0,05	104151	DIN 38407-27 : 2012-10(OB)
2.6-Dimethylphenol	u)	μg/l	<0,030 (NWG)	0,1	104152	DIN 38407-27 : 2012-10(OB)
3,4-Dimethylphenol		μg/l	<0,050 m)	0,05	104153	DIN 38407-27 : 2012-10(OB)
3,5-Dimethylphenol/ 4-Ethylphenol		μg/l	<0,40 m)	0,4	104154	DIN 38407-27 : 2012-10(OB)
2,3,5-/2,4,5-Trimethylphenol		μg/l	<0,010 (NWG)	0,05	104158	DIN 38407-27 : 2012-10(OB)
2,3,6-Trimethylphenol		μg/l	<0,050 m)	0,05	104159	DIN 38407-27 : 2012-10(OB)
2.4.6-Trimethylphenol	u)	μg/l	<0,050 m)	0,05	104160	DIN 38407-27 : 2012-10(OB)
3,4,5-Trimethylphenol	u)	µg/l	<0,050 m)	0,05	104161	DIN 38407-27 : 2012-10(OB)
2-Ethylphenol	u)	µg/l	<0,10 ^{m)}	0,1	104155	DIN 38407-27 : 2012-10(OB)
3-Ethylphenol	u)	µg/l	<0,25 m)	0,25	104156	DIN 38407-27 : 2012-10(OB)
Phenole Summe gem. ErsatzbaustoffV		μg/l	1,4 ×)		112219	Berechnung aus Messwerten der Einzelparameter

Sonstige Parameter

akkre

7025:2018

E

Dokument berichteten

oundings : an annotes					
L/S-Verhältnis	u) ml/g	0,26	0	118403	DIN 19528 : 2009-01(OB)
	Transfer W.				

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe

Bestimmungsgrenze zur Berechnung zugrunde gelegt.
pm) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da zur Extraktion und Analyse nur eine geringe Probenmenge vorlag.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Maltixelfekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.
hb) Die Nachweis-/Bestimmungsgrenze musste erhöht werden, da eine hohe Belastung einzelner Analyten eine Vermessung in der für die angegebenen Grenzen notwendigen

unverdünnten Analyse nicht erlaubte. Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender

Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

u) externe Dienstleistung eines AGROLAB GROUP Labors

Untersuchung durch

(OB) AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg, für die zitierte Methode akkreditiert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14289-01-00 DAkkS

DIN EN ISO 10304-1 : 2009-07; DIN EN ISO 10523 : 2012-04; DIN EN ISO 17294-2 : 2017-01; DIN EN ISO 9377-2 : 2001-07; DIN EN 1484: 2019-04; DIN EN 27888: 1993-11; DIN 19528: 2009-01; DIN 38407-27: 2012-10; DIN 38407-39: 2011-09

Seite 2 von 3

Geschäftsführer Dr. Paul Wimmer Dr. Carlo C. Peich Dr. Torsten Zurmühl

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

gekennzeichnet.

Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditient, Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol "")

Analysennr.

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778852

Kunden-Probenbezeichnung

L/S=0.3 2024055_01EBV (Beton-RC 0/56)

Beginn der Prüfungen: 26,06,2024 Ende der Prüfungen: 10.07.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AWV Sebastian Thiele, Tel. 03741/55076-8

Sebastian.Thiele@agrolab.de Kundenbetreuung

Seite 3 von 3

Your labs. Your service.

AWV JössnitzerStr.113 08525 Plauen

Institut Dr. Körner & Partner Ingenieurgesellschaft mbh Leipzig Graf-Platow-Straße 1 04683 Naunhof

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

Analysennr.

778853

778851

Probeneingang

26.06.2024

Probenahme

26.06.2024

Probenehmer

Auftraggeber

Kunden-Probenbezeichnung

L/S=1 2024055_01EBV (Beton-RC 0/56)

Säulentestnr.

dem

Einheit

Best.-Gr. Parameter Methode Ergebnis

		Lillieit	Ligebilla	D001. D1.	1 didinotoi	1110111025
Eluat						
pH-Wert	u)		12	0	76801	DIN EN ISO 10523 : 2012-04(OB)
elektrische Leitfähigkeit	u)	μS/cm	2260	10	2828	DIN EN 27888 : 1993-11(OB)
Kohlenwasserstoffe C10-C22	u)	μg/l	<50	50	117972	DIN EN ISO 9377-2 : 2001-07(OB)
Kohlenwasserstoffe C10-C40		μg/l	<50	50	100286	DIN EN ISO 9377-2 : 2001-07(OB)
Chlorid (CI)		mg/l	19	2	4900	DIN EN ISO 10304-1 : 2009- 07(OB)
Sulfat (SO4)	u)	mg/l	29	2	4916	DIN EN ISO 10304-1 : 2009- 07(OB)
Antimon (Sb)	u)	µg/l	<2,5	2,5	106362	DIN EN ISO 17294-2 : 2017- 01(OB)
Arsen (As)	u)	µg/l	<2,5	2,5	100222	DIN EN ISO 17294-2 : 2017- 01(OB)
Blei (Pb)	u)	µg/l	1,2	1	14075	DIN EN ISO 17294-2 : 2017- 01(OB)
Cadmium (Cd)	u)	µg/l	<0,25	0,25	14074	DIN EN ISO 17294-2 : 2017- 01(OB)
Chrom (Cr)	u)	μg/l	22	1	100223	DIN EN ISO 17294-2 : 2017- 01(OB)
Kupfer (Cu)	u)	μg/l	19	5	14077	DIN EN ISO 17294-2 : 2017- 01(OB)
Molybdän (Mo)	u)	μg/l	5,7	5	13055	DIN EN ISO 17294-2 : 2017- 01(OB)
Nickel (Ni)	u)	μg/l	<5,0	5	14078	DIN EN ISO 17294-2 : 2017- 01(OB)
Vanadium (V)	u)	μg/l	4,7	2	100281	DIN EN ISO 17294-2 : 2017- 01(OB)
Zink (Zn)	u)	µg/l	<30	30	100302	DIN EN ISO 17294-2 : 2017- 01(OB)
DOC	u)	mg/l	3,8	1	2382	DIN EN 1484 : 2019-04(OB)

Eluat	(PAK)
Acena	phthen

Liuat (i Ait)				1		DIN 00407 20 - 2044 20/00)
Acenaphthen	u)	μg/l	0,37	0,01	104200	DIN 38407-39 : 2011-09(OB)
Acenaphthylen	u)	µg/l	0,033	0,01	104186	DIN 38407-39 : 2011-09(OB)
Fluoren	u)	µg/l	0,11	0,01	104187	DIN 38407-39 : 2011-09(OB)
Phenanthren		µg/l	0,21	0,01	104189	DIN 38407-39 : 2011-09(OB)
Anthracen	u)	µg/l	0,14	0,01	104199	DIN 38407-39 : 2011-09(OB)
Fluoranthen	u)		0,66	0,01	104192	DIN 38407-39 : 2011-09(OB)
Pyren			2,0	0,01	104188	DIN 38407-39 : 2011-09(OB)
Benzo(a)anthracen		µg/l	0,14	0,01	104198	DIN 38407-39 : 2011-09(OB)
Chrysen		µg/l	0,17	0,01	104194	DIN 38407-39 : 2011-09(OB)

Seite 1 von 3

Geschäftsführer Dr. Paul Wimmer Dr. Carlo C. Peich Dr. Torsten Zurmühl

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

AGROLAB

Your labs. Your service.

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778853

Analysennr.

Kunden-Probenbezeichnung

L/S=1 2024055_01EBV (Beton-RC 0/56)

	Einheit	Ergebnis	BestGr.	Parameter	Methode
Benzo(b)fluoranthen	u) µg/i	<0,010 (+)	0,01	104197	DIN 38407-39 : 2011-09(OB)
Benzo(k)fluoranthen	u) µg/l	<0.010 m)	0,01	104195	DIN 38407-39 : 2011-09(OB)
Benzo(a)pyren	u) µg/l	<0,010 m)	0,01	104185	DIN 38407-39 : 2011-09(OB)
Dibenzo(ah)anthracen	u) µg/l	<0,0030 (NWG)	0.01	104193	DIN 38407-39 : 2011-09(OB)
Benzo(ghi)perylen	u) µg/l	<0,0030 (NWG)	0,01	104196	DIN 38407-39 : 2011-09(OB)
Indeno(1,2,3-cd)pyren	u) µg/l	<0,0030 (NWG)	0,01	104191	DIN 38407-39 : 2011-09(OB)
PAK 15 Summe gem. ErsatzbaustoffV	μg/l	3,8 #5)	0,05	112214	Berechnung aus Messwerten der Einzelparameter

Flust (Phenol/ Alkylphenole)

Eluat (Phenol/ Alkylpheno		μg/l	0,73	0.05	100253	DIN 38407-27 : 2012-10(OB)
2-Methylphenol		μg/l	<0.10 m)	0.1	100257	DIN 38407-27 : 2012-10(OB)
3-Methylphenol		μg/l	0,41 m)	0,05	100258	DIN 38407-27 : 2012-10(OB)
4-Methylphenol		µg/l	<0,050 m)	0,05	100259	DIN 38407-27 : 2012-10(OB)
2,3-Dimethylphenol		μg/l	<0.050 m)	0,05	104149	DIN 38407-27 : 2012-10(OB)
2,4-Dimethylphenol		μg/l	<0,050 m)	0,05	104150	DIN 38407-27 : 2012-10(OB)
2,5-Dimethylphenol		μg/l	<0,050 m)	0,05	104151	DIN 38407-27 : 2012-10(OB)
2.6-Dimethylphenol		µg/l	<0,030 (NWG)	0,1	104152	DIN 38407-27 : 2012-10(OB)
3,4-Dimethylphenol		µg/l	<0,010 (NWG)	0,05	104153	DIN 38407-27 : 2012-10(OB)
3,5-Dimethylphenol/ 4-Ethylphenol		µg/l	<0,30 m)	0,3	104154	DIN 38407-27 : 2012-10(OB)
2,3,5-/2,4,5-Trimethylphenol		μg/l	<0,010 (NWG)	0,05	104158	DIN 38407-27 : 2012-10(OB)
2.3,6-Trimethylphenol		μg/l	<0,010 (NWG)	0,05	104159	DIN 38407-27 : 2012-10(OB)
2,4,6-Trimethylphenol		μg/l	<0,010 (NWG)	0,05	104160	DIN 38407-27 : 2012-10(OB)
3,4,5-Trimethylphenol	u)	μg/l	<0,010 (NWG)	0,05	104161	DIN 38407-27 : 2012-10(OB)
2-Ethylphenol	u)	μg/l	<0,030 (NWG)	0,1	104155	DIN 38407-27 : 2012-10(OB)
3-Ethylphenol	u)	μg/l	<0,20 m)	0,2	104156	DIN 38407-27 : 2012-10(OB)
Phenole Summe gem. ErsatzbaustoffV		µg/l	1,1 ×)		112219	Berechnung aus Messwerten der Einzelparameter

Sonstige Parameter

L/S-Verhältnis	u) mi/a	0,98	0	118403	DIN 19528 : 2009-01(OB)

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt. m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixelfekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

u) externe Dienstleistung eines AGROLAB GROUP Labors

Untersuchung durch

(OB) AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg, für die zitlerte Methode akkreditlert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14289-01-00 DAkkS

Methoden

DIN EN ISO 10304-1: 2009-07; DIN EN ISO 10523: 2012-04; DIN EN ISO 17294-2: 2017-01; DIN EN ISO 9377-2: 2001-07; DIN EN 1484 : 2019-04; DIN EN 27888 : 1993-11; DIN 19528 : 2009-01; DIN 38407-27 : 2012-10; DIN 38407-39 : 2011-09

Seite 2 von 3

Geschäftsführer Dr. Paul Wimmer Dr. Carlo C. Peich Dr. Torsten Zurmühl

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

gekennzeichnet.

Ausschließlich nicht akkreditierte Verfahren sind mit dem

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778853

Analysennr. Kunden-Probenbezeichnung

L/S=1 2024055_01EBV (Beton-RC 0/56)

Beginn der Prüfungen: 26.06.2024 Ende der Prüfungen: 05.07.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AWV Sebastian Thiele, Tel. 03741/55076-8 Sebastian.Thiele@agrolab.de

Kundenbetreuung

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

AWV JössnitzerStr.113 08525 Plauen

Institut Dr. Körner & Partner Ingenieurgesellschaft mbh Leipzig Graf-Platow-Straße 1 04683 Naunhof

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV Auftrag

Analysennr. 778854 26.06.2024 Probeneingang 26.06.2024 Probenahme Auftraggeber Probenehmer

L/S=2 2024055 01EBV (Beton-RC 0/56) Kunden-Probenbezeichnung

778851 Säulentestnr.

Einheit Ergebnis Best.-Gr. Parameter Methode **Eluat** DIN EN ISO 10523: 2012-04(OB) u) 0 76801 12 pH-Wert DIN EN 27888: 1993-11(OB) u) µS/cm 2828 elektrische Leitfähigkeit 1760 10 DIN EN ISO 9377-2: 2001-07(OB) 117972 Kohlenwasserstoffe C10-C22 u) µg/l <50 50 u) µg/l DIN EN ISO 9377-2: 2001-07(OB) <50 50 100286 Kohlenwasserstoffe C10-C40 DIN EN ISO 10304-1: 2009u) mg/l 8,4 2 4900 Chlorid (CI) 07(OB) DIN EN ISO 10304-1: 2009-22 2 4916 Sulfat (SO4) u) mg/l 07(OB) DIN EN ISO 17294-2: 2017u) µg/l <2,5 2,5 106362 Antimon (Sb) 01(OB) DIN EN ISO 17294-2: 2017-<2,5 2,5 100222 u) µg/l Arsen (As) 01(OB) DIN EN ISO 17294-2: 2017-1 14075 <1,0 Blei (Pb) u) µg/l 01(OB) DIN EN ISO 17294-2 : 2017-01(OB) <0,25 0,25 14074 Cadmium (Cd) u) µg/l DIN EN ISO 17294-2: 2017-100223 Chrom (Cr) u) µg/l 12 1 01(OB) DIN EN ISO 17294-2: 2017-5 14077 u) µg/l 8,9 Kupfer (Cu) 01(OB) DIN EN ISO 17294-2: 2017-13055 5 Molybdän (Mo) u) µg/l <5,0 01(OB) DIN EN ISO 17294-2: 2017-5 14078 u) µg/l <5.0 Nickel (Ni) 01(OB) DIN EN ISO 17294-2: 2017-2 100281

Eluat	(PAK)
-------	-------

Vanadium (V)

Zink (Zn)

DOC

Verfahren sind

nicht 2

ISO/IEC 1

DIN EN

u)	µg/l	0,24 va)	0,01	104200	DIN 38407-39 : 2011-09(OB)
	775	0,023 va)	0,01	104186	DIN 38407-39 : 2011-09(OB)
		0.047 va)	0,01	104187	DIN 38407-39 : 2011-09(OB)
	1111	0,026 va)	0,01	104189	DIN 38407-39 : 2011-09(OB)
		0.077 va)	0,01	104199	DIN 38407-39 : 2011-09(OB)
		0.14 va)	0,01	104192	DIN 38407-39 : 2011-09(OB)
		1.7 va)	0,1	104188	DIN 38407-39 : 2011-09(OB)
		0.11 va)	0,01	104198	DIN 38407-39 : 2011-09(OB)
		0.087 va)	0,01	104194	DIN 38407-39 : 2011-09(OB)
	u) u) u) u) u) u)	n) hay n) hay n) hay n) hay n) hay n) hay n) hay	u) µg/l 0,023 va) u) µg/l 0,047 va) u) µg/l 0,026 va) u) µg/l 0,077 va) u) µg/l 0,14 va) u) µg/l 1,7 va) u) µg/l 0,11 va)	u) µg/l 0,023 va) 0,01 u) µg/l 0,047 va) 0,01 u) µg/l 0,026 va) 0,01 u) µg/l 0,077 va) 0,01 u) µg/l 0,14 va) 0,01 u) µg/l 1,7 va) 0,1 u) µg/l 0,11 va) 0,01 u) µg/l 0,11 va) 0,01	u) µg/l 0,023 va) 0,01 104186 u) µg/l 0,047 va) 0,01 104187 u) µg/l 0,026 va) 0,01 104189 u) µg/l 0,077 va) 0,01 104199 u) µg/l 0,14 va) 0,01 104192 u) µg/l 1,7 va) 0,1 104188 u) µg/l 0,11 va) 0,01 104198

2,9

<30

2,2

30

1

100302

2382

Seite 1 von 3

01(OB) DIN EN ISO 17294-2: 2017-

01(OB) DIN EN 1484 : 2019-04(OB)

Geschäftsführer Dr. Paul Wimmer Dr. Carlo C. Peich Dr. Torsten Zurmühl

u) µg/l

u) µg/l

u) mg/l

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778854

Analysennr.

Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol " ")

17025;2018 akkredibert

Ш

Verfahren

Dokument berichteten

L/S=2 2024055_01EBV (Beton-RC 0/56)

Kunden-Probenbezeichnung Ergebnis Best.-Gr. Parameter Methode Einheit 0.01 104197 DIN 38407-39: 2011-09(OB) u) µg/l 0.012 va) Benzo(b)fluoranthen DIN 38407-39: 2011-09(OB) u) µg/l <0,010 m) 0,01 104195 Benzo(k)fluoranthen DIN 38407-39: 2011-09(OB) 104185 Benzo(a)pyren u) µg/l <0,010 m) 0,01 <0,010 m) DIN 38407-39: 2011-09(OB) u) µg/l 0.01 104193 Dibenzo(ah)anthracen DIN 38407-39: 2011-09(OB) u) µg/l <0,010 m) 0,01 104196 Benzo(ghi)perylen DIN 38407-39 : 2011-09(OB) u) µg/l 104191 Indeno(1,2,3-cd)pyren <0,010 m) 0,01 Berechnung aus Messwerten der Einzelparameter 112214 PAK 15 Summe gem. 2,5 #5) 0,05 µg/l ErsatzbaustoffV

Phenol	u)	μg/l	<0,50 m)	0,5	100253	DIN 38407-27 : 2012-10(OB)
2-Methylphenol		µg/l	<0,050 m)	0,05	100257	DIN 38407-27 : 2012-10(OB)
3-Methylphenol	u)	µg/l	<0,25 m)	0,25	100258	DIN 38407-27 : 2012-10(OB)
4-Methylphenol	u)	µg/l	<0,050 ^{m)}	0,05	100259	DIN 38407-27 : 2012-10(OB)
2,3-Dimethylphenol	u)	µg/l	<0,010 (NWG)	0,05	104149	DIN 38407-27 : 2012-10(OB)
2,4-Dimethylphenol	u)	µg/l	<0,010 (NWG)	0,05	104150	DIN 38407-27 : 2012-10(OB)
2,5-Dimethylphenol	u)	μg/l	<0,010 (NWG)	0,05	104151	DIN 38407-27 : 2012-10(OB)
2,6-Dimethylphenol		μg/l	<0,030 (NWG)	0,1	104152	DIN 38407-27 : 2012-10(OB)
3,4-Dimethylphenol			<0,010 (NWG)	0,05	104153	DIN 38407-27 : 2012-10(OB)
3,5-Dimethylphenol/ 4-Ethylphenol	u)	µg/l	<0,10 ^{m)}	0,1	104154	DIN 38407-27 : 2012-10(OB)
2,3,5-/2,4,5-Trimethylphenol	u)	µg/l	<0,010 (NWG)	0,05	104158	DIN 38407-27 : 2012-10(OB)
2,3,6-Trimethylphenol	u)	µg/l	<0,050 m)	0,05	104159	DIN 38407-27 : 2012-10(OB)
2,4,6-Trimethylphenol	u)	µg/l	<0,010 (NWG)	0,05	104160	DIN 38407-27 : 2012-10(OB)
3,4,5-Trimethylphenol	u)	µg/l	<0,010 (NWG)	0,05	104161	DIN 38407-27 : 2012-10(OB)
2-Ethylphenol	u)	µg/l	<0,030 (NWG)	0,1	104155	DIN 38407-27 : 2012-10(OB)
3-Ethylphenol	u)	µg/l	<0,10 m)	0,1	104156	DIN 38407-27 : 2012-10(OB)
Phenole Summe gem. ErsatzbaustoffV		µg/l	n.b.		112219	Berechnung aus Messwerten der Einzelparameter

Sonstide Parameter

Sonstige Parameter					
L/S-Verhältnis	u) ml/g	2,0	0	118403	DIN 19528 : 2009-01(OB)

#5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixelfekte bzw. Substanzüberlegerungen eine Quantifizierung erschweren.

va) Die Nachweis- bzw. Bestimmungsgrenze musste erhöht werden, da die vorliegende Konzentration erforderte, die Probe in den gerätespezifischen Arbeitsbereich zu verdünnen.

Erfäuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender

Bestimmungsgrenze nicht quantifizierbar. Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze

nicht nachzuweisen. Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofem die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die

Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

u) externe Dienstleislung eines AGROLAB GROUP Labors

Untersuchung durch

(OB) AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg, für die zitierte Melhode akkreditiert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14289-01-00 DAkkS

Methoden

DIN EN ISO 10304-1 : 2009-07; DIN EN ISO 10523 : 2012-04; DIN EN ISO 17294-2 : 2017-01; DIN EN ISO 9377-2 : 2001-07; DIN EN 1484 : 2019-04; DIN EN 27888 : 1993-11; DIN 19528 : 2009-01; DIN 38407-27 : 2012-10; DIN 38407-39 : 2011-09

Seite 2 von 3

Deutsche Akkreditierungsstelle D-PL-14087-01-00

((DAkkS

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778854

Analysennr. Kunden-Probenbezeichnung

L/S=2 2024055_01EBV (Beton-RC 0/56)

Beginn der Prüfungen: 26.06.2024 Ende der Prüfungen: 08.07.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AWV Sebastian Thiele, Tel. 03741/55076-8 Sebastian.Thiele@agrolab.de Kundenbetreuung

in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert, Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol "")" gekennzeichnet

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550

eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

Best.-Gr. Parameter Methode

AWV JössnitzerStr.113 08525 Plauen

Institut Dr. Körner & Partner Ingenieurgesellschaft mbh Leipzig Graf-Platow-Straße 1 04683 Naunhof

> 10.07.2024 Datum Kundennr. 27014741

PRÜFBERICHT

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV Auftrag

Analysennr. 778855 26.06.2024 Probeneingang 26.06.2024 Probenahme Probenehmer Auftraggeber

L/S=4 2024055 01EBV (Beton-RC 0/56) Kunden-Probenbezeichnung

Einheit

		Limbia				
Eluat						
pH-Wert	u)		12	0	76801	DIN EN ISO 10523 : 2012-04(OB)
elektrische Leitfähigkeit	u)	μS/cm	1470	10	2828	DIN EN 27888 : 1993-11(OB)
Kohlenwasserstoffe C10-C22		μg/l	<50	50	117972	DIN EN ISO 9377-2 : 2001-07(OB)
Kohlenwasserstoffe C10-C40		µg/t	<50	50	100286	DIN EN ISO 9377-2 : 2001-07(OB)
Chlorid (CI)		mg/l	3,2	2	4900	DIN EN ISO 10304-1 : 2009- 07(OB)
Sulfat (SO4)	u)	mg/l	19	2	4916	DIN EN ISO 10304-1 : 2009- 07(OB)
Antimon (Sb)	u)	μg/l	<2,5	2,5	106362	DIN EN ISO 17294-2 : 2017- 01(OB)
Arsen (As)	u)	µg/l	<2,5	2,5	100222	DIN EN ISO 17294-2 : 2017- 01(OB)
Blei (Pb)	u)	μg/l	<1,0	1	14075	DIN EN ISO 17294-2 : 2017- 01(OB)
Cadmium (Cd)	u)	μg/l	<0,25	0,25	14074	DIN EN ISO 17294-2 : 2017- 01(OB)
Chrom (Cr)	u)	μg/I	7,8	1	100223	DIN EN ISO 17294-2 : 2017- 01(OB)
Kupfer (Cu)	u)	μg/l	<5,0	5	14077	DIN EN ISO 17294-2 : 2017- 01(OB)
Molybdän (Mo)	u)	μg/l	<5,0	5	13055	DIN EN ISO 17294-2 : 2017- 01(OB)
Nickel (Ni)	u)	µg/l	<5,0	5	14078	DIN EN ISO 17294-2 : 2017- 01(OB)
Vanadium (V)	u)	μg/l	2,4	2	100281	DIN EN ISO 17294-2 : 2017- 01(OB)
Zink (Zn)	u)	μg/l	<30	30	100302	DIN EN ISO 17294-2 : 2017- 01(OB)
DOC	u)	mg/l	1,1	1	2382	DIN EN 1484 : 2019-04(OB)
Eluat (PAK)						
Accompatition	u)	uall	0 26 va)	0.01	104200	DIN 38407-39 : 2011-09(OB)

Ergebnis

t berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem

u) µg/l 0,26 va) 104200 Acenaphthen 0,01 DIN 38407-39: 2011-09(OB) u) µg/l 0,020 va) 104186 0,01 Acenaphthylen DIN 38407-39: 2011-09(OB) u) µg/l 0,063 va) 0,01 104187 Fluoren DIN 38407-39: 2011-09(OB) 104189 u) µg/l 0,073 va) 0,01 Phenanthren DIN 38407-39: 2011-09(OB) u) µg/l 0,11 va) 104199 0,01 Anthracen DIN 38407-39 : 2011-09(OB) 0,31 va) 104192 u) µg/l 0,01 Fluoranthen 1,9 va) DIN 38407-39 : 2011-09(OB) u) µg/l 104188 0,1 Pyren DIN 38407-39: 2011-09(OB) u) µg/l 0,13 va) 0,01 104198 Benzo(a)anthracen DIN 38407-39: 2011-09(OB) 0,14 va) 104194 u) µg/l 0,01 Chrysen u) µg/l 104197 DIN 38407-39: 2011-09(OB) 0,018 va) 0,01 Benzo(b)fluoranthen

Seite 1 von 3

Deutsche Akkreditierungsstelle D-PL-14087-01-00

Geschäftsführer Dr. Paul Wimmer Dr. Carlo C. Peich Dr. Torsten Zurmühl

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Your labs. Your service.

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol " ") '

17025:2018 akkr

낊

Verfahren

diesem Dokument berichteten

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055_01EBV

778855

Analysennr. Kunden-Probenbezeichnung

L/S=4 2024055_01EBV (Beton-RC 0/56)

	Einheit	Ergebnis	BestGr.	Parameter	Methode
Benzo(k)fluoranthen	u) µg/l	<0,010 m)	0,01	104195	DIN 38407-39 : 2011-09(OB)
Benzo(a)pyren	u) µg/l	<0,010 m)	0,01	104185	DIN 38407-39 : 2011-09(OB)
Dibenzo(ah)anthracen	u) µg/l	<0,010 m)	0,01	104193	DIN 38407-39 : 2011-09(OB)
Benzo(ahi)perylen	u) µg/l	<0.010 m)	0,01	104196	DIN 38407-39 : 2011-09(OB)
Indeno(1,2,3-cd)pyren	u) µg/l	<0.010 m)	0,01	104191	DIN 38407-39 : 2011-09(OB)
PAK 15 Summe gem. ErsatzbaustoffV	µg/l	3,0 #5)	0,05	112214	Berechnung aus Messwerten der Einzelparameter

Flust (Phenol/ Alkylphenole)

Eluat (Phenoi/ Alkylphenoie)					
Phenol	u)	µg/l	<0,25 m)	0,25	100253	DIN 38407-27 : 2012-10(OB)
2-Methylphenol		µg/l	<0,050 m)	0,05	100257	DIN 38407-27 : 2012-10(OB)
3-Methylphenol		µg/l	<0,10 m)	0,1	100258	DIN 38407-27 : 2012-10(OB)
4-Methylphenol		µg/l	<0,050 m)	0,05	100259	DIN 38407-27 : 2012-10(OB)
2,3-Dimethylphenol		µg/l	<0.010 (NWG)	0,05	104149	DIN 38407-27 : 2012-10(OB)
2,4-Dimethylphenol		µg/l	<0,010 (NWG)	0,05	104150	DIN 38407-27 : 2012-10(OB)
2,5-Dimethylphenol		µg/l	<0,010 (NWG)	0,05	104151	DIN 38407-27 : 2012-10(OB)
2,6-Dimethylphenol		μg/l	<0,030 (NWG)	0,1	104152	DIN 38407-27 : 2012-10(OB)
3,4-Dimethylphenol		μg/l	<0,010 (NWG)	0,05	104153	DIN 38407-27 : 2012-10(OB)
3,5-Dimethylphenol/ 4-Ethylphenol		μg/l	<0,030 (NWG)	0,1	104154	DIN 38407-27 : 2012-10(OB)
2,3,5-/2,4,5-Trimethylphenol		μg/l	<0,010 (NWG)	0,05	104158	DIN 38407-27 : 2012-10(OB)
2,3,6-Trimethylphenol		μg/l	<0.010 (NWG)	0,05	104159	DIN 38407-27 : 2012-10(OB)
2,4,6-Trimethylphenol	_	μg/l	<0.010 (NWG)	0,05	104160	DIN 38407-27 : 2012-10(OB)
3,4,5-Trimethylphenol		μg/l	<0,010 (NWG)	0,05	104161	DIN 38407-27 : 2012-10(OB)
2-Ethylphenol		μg/l	<0,030 (NWG)	0,1	104155	DIN 38407-27 : 2012-10(OB)
3-Ethylphenol		µg/l	<0,050 m)	0,05	104156	DIN 38407-27 : 2012-10(OB)
Phenole Summe gem. ErsatzbaustoffV		μg/l	n.b.		112219	Berechnung aus Messwerten der Einzelparameter

Sonstige Parameter

L/S Verhältnic	u) ml/a	3.5	0	118403	DIN 19528 : 2009-01(OB)

#5) Einzelwerter, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe

Bestimmungsgrenze zur Berechnung zugrunde gelegt.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.
va) Die Nachweis- bzw. Bestimmungsgrenze musste erhöht werden, da die vorliegende Konzentration erforderte, die Probe in den gerätespezifischen Arbeitsbereich zu verdünnen.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

u) externe Dienstleistung eines AGROLAB GROUP Labors

(OB) AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg, für die zitierte Methode akkreditiert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14289-01-00 DAkkS

Methoden

DIN EN ISO 10304-1: 2009-07; DIN EN ISO 10523: 2012-04; DIN EN ISO 17294-2: 2017-01; DIN EN ISO 9377-2: 2001-07; DIN EN 1484 : 2019-04; DIN EN 27888 : 1993-11; DIN 19528 : 2009-01; DIN 38407-27 : 2012-10; DIN 38407-39 : 2011-09

> Seite 2 von 3 ((DAkkS Akkreditierungsstelle D-PL-14087-01-00

DOC-8-2019259-DE-P16

Jößnitzer Str. 113, 08525 Plauen, Germany Tel.: +49 (03741) 550 760, Fax: +49 (03741) 523 550 eMail: awv@agrolab.de www.agrolab.de

Datum

10.07.2024

Kundennr.

27014741

PRÜFBERICHT

Auftrag

1592119 Auftrag: 0195/24 Gr; Prüf-Nr.: 2024055 01EBV

778855

Analysennr. Kunden-Probenbezeichnung

L/S=4 2024055_01EBV (Beton-RC 0/56)

Beginn der Prüfungen: 26,06.2024 Ende der Prüfungen: 08.07.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AWV Sebastian Thiele, Tel. 03741/55076-8 Sebastian.Thiele@agrolab.de Kundenbetreuung

Die in diesem Dokument berichtelten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditien. Ausschließlich nicht akkreditiere Verfahren sind mit dem Symbol "")" gekennzeichnet

Ingenieurgesellschaft mbH Leipzig

Prüfzeugnis-Nr.: 2024055_01EBV

Anlage 3

Protokoll zur Betriebsbeurteilung / Betriebsbegehung

INSTITUT DR. KÖRNER & PARTNER Ingenieurgesellschaft mbH Leipzig

Institut Dr.Körner & Parlner, Albrechtshain, Graf-Platow-Str. 1, 04683 Naunhof Tel.: (034293) 5270 Fax: (034293) 52730 e-Mal: info@ikpleipzig.de Prüfstelle nach RAP Stra 15 für A1, A3, A4, BB3, BB4, C0, C1, C2, C3, C4, D0, D3, D4, E3, E4, F2, F3, F4, G3, G4, H1, H3, H4, I1, I2, I3, I4

Protokoll zur Betriebsbeurteilung / Betriebsbegehung

nach Ersatzbaustoffverordnung und TL SoB-StB

Unternehmen / Auftraggeber:	Rösl Entsorgung GmbH & Co. KG			
	Zschettgauer Str. 3			
	04838 Jesewitz OT Liemehna			
Überprüfungsstelle:	Institut Dr. Körner & Partner			
	Ingenieurgesellschaft mbH Leipzig			
	Graf-Platow-Str. 1			
	04683 Naunhof			
Anwesende Personen:				
Frau Eckert (Rösl GmbH)	and Doube of Living			
Herr Graupner (Institut Dr. Korner	und Partner Leipzig)			
Data and an Übermerüfensen	10.00 2024 Hhrmaits 0:00 11:20			
Datum der Überprüfung:	19.06.2024 Uhrzeit: 9:00 -11:30			
Aufbereitungsanlage / Lagerplatz:	Recyclingplatz Taucha			
	Pönitzer Weg			
Zusammenfassung der Betriebs	beurteilung / Betriebsbegehung			
Aufbereiteter Mineralischer Ersatzbaustoff: Recycling-Baustoff (Beton-Recycling)				
Produktion:	kontinuierlich x diskontinuierlich			
Anlage / RC-Platz:	stationär mobil			
2. Technische Anlagenkomponeneten				
2.1 Brecher (Typ): mobile Brech	heranlage (Powerscreen XA/XR400S T4 / Backenbrecher)			
Bemerkung: Einsatz am Standort Taucha, Pönitzer Weg				
Demending. Linsatz and	Standort radena, r omitzer weg			

INSTITUT DR. KÖRNER & PARTNER Ingenieurgesellschaft mbH Leipzig

Institut Dr.Körner & Partner, Albrechtshain, Graf-Platow-Str, 1, 04683 Naunhof Tel.: (034293) 5270 Fax: (034293) 52730 e-Mal: info@ikpleipzig.de Prüfstelle nach RAP Stra 15 für A1, A3, A4, BB3, BB4, C0, C1, C2, C3, C4, D0, D3, D4, E3, E4, F2, F3, F4, G3, G4, H1, H3, H4, I1, I2, I3, I4

Protokoll zur Betriebsbeurteilung / Betriebsbegehung

nach Ersatzbaustoffverordnung und TL SoB-StB

2.2 Siebe / Siebmaschinen: x in Brecher integriert	Separate Siebanlage
2.3 Waage(n) (Ein- und Ausgangswaage) x Feste Waage	x Radladerwaage(n)
2.4 Baumaschinen x Radlader Sonstige:	x Bagger
2.5 Weitere Aufbereitungskomponenten	Magnetabscheider (mobile Brecheranlage)Sonstige:
3. Beschreibung der Anlage / Lagerplatz	
3.1 Art der Lagerflächen befestigt offen Bemerkungen: Lagerfläche besteht aus verd	unbesfestigt Halle(n) ichteter Schottertragschicht
3.2 Aufbau und Kennzeichnung der Lagerfläch X Halden Boxen X Kennzeichnung der Lager Bemerkungen:	Silos Separate Lagerung (verdächtiges Material, Material hoher Schadstoffbelastung)

INSTITUT DR. KÖRNER & PARTNER Ingenieurgesellschaft mbH Leipzig

Institut Dr.Körner & Partner, Albrechtshain, Graf-Platow-Str. 1, 04683 Naunhof Tel.: (034293) 5270 Fax: (034293) 52730 e-Mal: info@ikpleipzig.de

Prüfstelle nach RAP Stra 15 für A1, A3, A4, BB3, BB4, C0, C1, C2, C3, C4, D0, D3, D4, E3, E4, F2, F3, F4, G3, G4, H1, H3, H4, I1, I2, I3, I4

Protokoll zur Betriebsbeurteilung / Betriebsbegehung

nach Ersatzbaustoffverordnung und TL SoB-StB

4. Betriebsorganisation und personelle A	usstattung	
Dokumentation der Annahmekontr Anforderungen:	rolle Verantwort x erfüllt	:liches Personal: Herr Hedrich nicht erfüllt
WPK-System Anforderungen:	WPK-Beauf x erfüllt	trager: Herr Rösl nicht erfüllt
Innerbetriebliche organisatorische vollständige Dokumentation:	Regelungen x vorhanden	nicht vorhanden
Qualifizierte personelle Aufstellung Anforderungen:	(Fachkundiges Persor	nal) nicht erfüllt
Probenahme extern durch: Ingenie vollständige Dokumentation:	urbüro Heinecke Baus 💉 vorhanden	toff- u. Bodenlabor (Mockrehna) nicht vorhanden
Eigenüberwachung erfolgt über die	Untersuchungsstelle:	Labor für Wasser und Umwelt GmbH (Bad Liebenwerda)
vollständige Dokumentation:	vorhanden	nicht vorhanden

Taucha, den 19.06.2024

Graupner / Projektbearbeiter